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Background & Motivation

3

Ionosphere TEC Delay Irregularities/Scintillation: ROTI Space Weather Impacts
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• Global Ionospheric Maps (GIM)

▪ Released by CODE ionospheric analysis center

▪ Resolution: 1-hour interval, 2.5° by 5°

• Regional ROTI Maps:

▪ Coverage: (45-90 N, 0-180 W)

▪ Data Source: UNACO and CHAIN networks

▪ Resolution: 10-minute interval, 1° by 1°

Predicted Indicators

4Global ionospheric TEC map GNSS-derived ROTI map over North America 4



• Input: feed n historical maps (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏−𝟏 , 𝑿𝒏, );

• Output: predict m future maps (𝑿𝒏+𝟏, 𝑿𝒏+𝟐, … , 𝑿𝒏+𝒎−𝟏 , 𝑿𝒏+𝒎 )

• Encoder/Decoder Blocks

• Convolutional (conv) and deconvolutional (deconv) layers

• Core module: convolutional long short-term memory (ConvLSTM)

Machine Learning (ML) Algorithm: Architecture

convLSTM moduleConvLSTM-based machine learning architecture
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• Global TEC maps description: 1-hour interval; 2.5° by 5°; CODE analysis center

• Data division: solar activity levels are considered

• Residual prediction: 𝑋𝑡 = 𝑇𝐸𝐶 𝑡 − 𝑇𝐸𝐶(𝑡 − 24)

• Input features: 24 historical TEC maps

• Output features: 24 future TEC residual maps

• Predicted TEC maps: 𝑇𝐸𝐶𝑡 = 𝑋𝑡 + 𝑇𝐸𝐶(𝑡 − 24)

Application I: Prediction of Daily Global Ionospheric TEC Maps 
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Data coverage 7 years: October 19, 2014 - July 21, 2021

Data division
Training (60%), validation (20%), and testing (20%).

Data segmentation based on solar activity levels. 

Lead time 24 hours with 1-hour interval
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Application I: A qualitative case study

An example of the predicted global TEC maps with 1-hour interval during the 
main phase of one geomagnetic storm event (10:00-13:00 UT, May 6, 2015)

• codg: CODE's daily GIM, which is the ground truth

• convLSTM: ML algorithm developed in this study 

• c1pg: CODE'S 1-day predicted GIM

➢ Large-scale ionosphere patterns, such as EIA crest, are
well-preserved;

➢ TEC enhancement (see red circles) is well reproduced from
the convLSTM while the c1pg fails to capture it.

7



Storm time:

Quiet time:

Application I: Predicted Global TEC Maps with Lead Time of 24 Hours
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Application I: Statistical Evaluation 
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Latitudinal ME and RMSE errors of three prediction models 
on the testing set.  

➢ There are no systematic biases in the TEC maps predicted
by convLSTM and the persistence model.

➢ The convLSTM shows an improved performance than other
two models over various latitudes.

➢ RMSE errors shows obvious latitudinal dependence
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• GNSS-derived ROTI maps description:

▪ Coverage: (45-90 N, 0-180 W)

▪ Resolution: 10-minute interval, 1 by 1 degree

• Data division: training, validation and testing

• Loss Function: customed 𝐿c , instead of conventional 𝐿1 or 𝐿2

• Input features: 12 historical ROTI maps (120 minutes) 

• Output features: 6 future ROTI maps (60 minutes of lead time) 

Application II: Prediction of Storm-time High-latitude Irregularities
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Data used 2015

Training (60%) Jan 1-Aug 7

Validation (20%) Aug 8-Oct 19

Testing (20%) Oct 20-Dec 31
Customed Lc is designed to solve the problem caused by the 

imbalanced ROTI distribution
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Prediction example of ROTI maps over 6 prediction steps during the 
recovery phase (04:15-5:05 UT, December 21, 2015)

• A predicted example
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Application II: Prediction of Storm-time ROTI Maps
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• Statistical evaluation: weak (0.25 ≤ 𝑅𝑂𝑇𝐼 < 0.9)
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The convLSTM-Lc does not have an advantage
in prediction of weak ionospheric irregularities
when compared to convLSTM-L1 and
convLSTM-L2 implementations.

Prediction performance of convLSTM-Lc, convLSTM-L1, convLSTM-L2, and the 
persistence models under weak an ionospheric irregularity level

Application II: Prediction of Storm-time ROTI Maps
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• Statistical evaluation: moderate (0.9 ≤ 𝑅𝑂𝑇𝐼 < 2) and strong (𝑅𝑂𝑇 ≥ 2)

Prediction performance under moderate (b) and strong (c) ionospheric irregularity levels. 

The convLSTM-Lc implementation shows better performance than those from convLSTM-L1, convLSTM-L2, and
persistence models in predicting moderate and strong ionospheric irregularities for all lead times tested.

Application II: Prediction of Storm-time ROTI Maps
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The convLSTM-based ML model to tackle two GNSS ionosphere applications.

• ML + residual prediction: prediction of daily global TEC maps. The developed model
outperforms the c1pg and persistence model.

• ML + Lc loss function: prediction of high-latitude irregularities from GNSS-derived ROTI
maps. The developed model outperforms the convLSTM-L1, convLSTM-L2 and persistence
models.

Conclusion

Future Work
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• Incorporate solar wind and geomagnetic activity measurements into the model with the goal
of improving the prediction performance.
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