Machine Learning-based Prediction of global
TEC and High-latitude ROTI Maps
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Predicted Indicators
* Global lonospheric Maps (GIM)

Released by CODE ionospheric analysis center
Resolution: 1-hour interval, 2.5° by 5°

* Regional ROTI Maps:

Coverage: (45-90 N, 0-180 W)
Data Source: UNACO and CHAIN networks
Resolution: 10-minute interval, 1° by 1°

CODE GIM TEC, 2014-10-19 00:00:00
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Machine Learning (ML) Algorithm: Architecture

Encoder/Decoder Blocks
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Convolutional (conv) and deconvolutional (deconv) layers
Core module: convolutional long short-term memory (ConvLSTM)
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Application I: Prediction of Daily Global lonospheric TEC Maps

Global TEC maps description: 1-hour interval; 2.5° by 5°; CODE analysis center
Data division: solar activity levels are considered

Residual prediction: X, = TEC(t) — TEC(t — 24)

Input features: 24 historical TEC maps

Output features: 24 future TEC residual maps

Predicted TEC maps: TEC; = X, + TEC(t — 24)
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Application I: A qualitative case study

* codg: CODE's daily GIM, which is the ground truth
* ConVLSTM: l\/ll— algorlthm developed |n thlS StUdy 2015—05?(?5d190((llt()r::0th) 201‘5:3.2:;;-12)-22400 2015—05?:69190:00:00
* ¢lpg: CODE'S 1-day predicted GIM ' '

Large-scale ionosphere patterns, such as EIA crest, are
well-preserved.

TEC enhancement (see red circles) is well reproduced from
the convLSTM while the clpg fails to capture it.
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An example of the predicted global TEC maps with 1-hour interval during the
main phase of one geomagnetic storm event (10:00-13:00 UT, May 6, 2015)
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Application I: Predicted Global TEC Maps with Lead Time of 24 Hours

Storm time:

Quiet time:
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Application I: Statistical Evaluation
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Latitudinal ME and RMSE errors of three prediction models
on the testing set.

There are no systematic biases in the TEC maps predicted
by convLSTM and the persistence model.

The convLSTM shows an improved performance than other
two models over various latitudes.

RMSE errors shows obvious latitudinal dependence



Application ll: Prediction of Storm-time High-latitude Irregularities

* GNSS-derived ROTI maps description:
=  Coverage: (45-90 N, 0-180 W)
= Resolution: 10-minute interval, 1 by 1 degree

Data division: training, validation and testing

Loss Function: customed L. , instead of conventional L or L,

Input features: 12 historical ROTI maps (120 minutes)

Output features: 6 future ROTI maps (60 minutes of lead time)
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Customed Lc is designed to solve the problem caused by the

imbalanced ROTI distribution
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Application ll: Prediction of Storm-time ROTI Maps

A predicted example

Prediction example of ROTI maps over 6 prediction steps during the
recovery phase (04:15-5:05 UT, December 21, 2015)
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Application ll: Prediction of Storm-time ROTI Maps

 Statistical evaluation: weak (0.25 < ROTI < 0.9)
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Prediction performance of convLSTM-Lc, convLSTM-L1, convLSTM-L2, and the

persistence models under weak an ionospheric irregularity level

The convLSTM-Lc does not have an advantage
In prediction of weak ionospheric irregularities
when  compared to convLSTM-L; and
convLSTM-L, implementations.
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Application ll: Prediction of Storm-time ROTI Maps

« Statistical evaluation: moderate (0.9 < ROTI < 2) and strong (ROT = 2)
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Prediction performance under moderate (b) and strong (c) ionospheric irregularity levels.

The convLSTM-Lc implementation shows better performance than those from convLSTM-L;, convLSTM-L,, and
persistence models in predicting moderate and strong ionospheric irregularities for all lead times tested.
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Conclusion

The convLSTM-based ML model to tackle two GNSS ionosphere applications.

* ML + residual prediction: prediction of daily global TEC maps. The developed model
outperforms the clpg and persistence model.

* ML + Lc loss function: prediction of high-latitude irregularities from GNSS-derived ROT]
maps. The developed model outperforms the convLSTM-L1, convLSTM-L2 and persistence
models.

Future Work

* Incorporate solar wind and geomagnetic activity measurements into the model with the goal
of Improving the prediction performance.
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